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ABSTRACT  

Humans, animals, and plants all need water to thrive. Despite 

its significance, not all available water is safe for human 

consumption, household use, or commercial production. 

Industrialization, mining, pollution, and natural disasters are 

just a few of the many factors that reduce the quality of our 

drinking water and make it unfit for other uses as well. The 

World Health Organization has issued recommendations 

detailing the maximum allowable concentrations of different 

factors in drinking and irrigation water. In order to quantify 

the significance of these factors in establishing water quality, 

we devised the Water Quality Index (WQI) and the Irrigation 

Water Quality Index (IWQI). It can be extremely challenging 

to gather water samples from different locations, move them, 

measure them, and compare the results to standards while also 

sticking to a number of guidelines.  
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INTRODUCTION  

The availability of potable water is now widely 

recognized as a fundamental human right. One of 

the United Nations' 17 goals for an improved future 

for all people is universal access to pure water by 

2030 [1]. To guarantee and maintain access to 

water and hygiene for all [2] is the sixth target of 

the Sustainable Development Goals. 

The third Sustainable Development Goal (SDG) is 

good health and well-being, and clean water is 

directly related to this because it prevents the 

spread of diseases like cholera, typhoid, and 

diarrhoea, which together account for the majority 

of deaths (especially among children) in developing 

countries in Africa and Asia [3]. Agriculture and 

food manufacturing rely heavily on water resources 

as well. It has been estimated that about 45% of 

new born mortality can be attributed to hunger in 

poor nations, where malnutrition affects about 10% 

of the global population [5]. Therefore, ensuring 

worldwide food security is. 

crucially significant. Goal 2 of the SDGs is 

dedicated to achieving food security by 

encouraging healthy cultivation and enhancing 

food delivery, in an effort to put an end to world 

starvation. Water is essential in food production 

and cultivation in general, both for use in irrigation 

and for human and livestock sustenance. The 

supply and effective handling of water suitable for 

farming use is thus of paramount importance. 

Rivers, creeks, weather, and groundwater are just 

some of the places you can get water to use for 

consumption and gardening. (Accessed through 

wells and boreholes). Oftentimes, the most 

important variables in  

 

determining the composition of water samples are 

the source's makeup and traits. Human activities 

like mining, crude oil extraction, and Indus trial 

pollutants produce chemical wastes that ultimately 

find their way into streams, rivers, and other 

sources of water, altering the character and 

qualities of these waterways in ways that cannot be 

reversed by natural means alone. These fluids are 

eventually consumed by humans, used to hydrate 

animals, or put to use in agricultural endeavours. 

This water poses serious health risks and may even 

be fatal if ingested. Therefore, it is crucial to 

establish an appropriate procedure to guarantee 

complete water tracking from the point of origin to 

the point of final consumption. Water purity or 

''ability for use'' for human (and animal) intake, 

irrigation, and household (or commercial) purposes 

must be evaluated using samples gathered at each 

surveillance site. 

Literature Review  

Here, we take a look at some previously published 

works that cover similar ground. This part is 

broken up into three sections, the first of which 

discusses cellular network uses in water parameter 

tracking. Water quality standards for human 

consumption come in at number two, followed by 

studies that evaluate water for its potential in 

agricultural farming.  
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USE OF WIRELESS NETWORKS IN 

WATER CONTROL MONITORING  

A network for detecting and tracking water 

characteristics in a Brazilian metropolis with a 

metal-producing economy was created in [12]. 

pH, dissolved particles, Zinc, Lead, and other 

physicochemical water factors are being measured 

at we’ve water surveillance sites. The data was then 

analysed using main components. In a similar vein, 

[13] established a network of 23 monitoring sites to 

evaluate the physicochemical and microbiological 

characteristics of the water in the Limpopo River 

Basin in Mozambique. The authors of [14] created 

a fiscally feasible model that merged evolutionary 

algorithm with 1-D water quality simulation to 

handle the difficulties of optimum location of 

sensors and sampling rates, which are commonly 

encountered when creating water monitoring 

systems. The writers were able to answer the NP-

hard issue of ideally situating tracking sites, even 

though the work was only approximated using a 

genetic algorithm. It is common practice to take 

samples from a body of water at regular intervals in 

order to monitor its characteristics. Physical, 

molecular, and microbial indicators may be 

included here, such as hydrogen potential (pH), 

temperature, salt concentration, etc. The data from 

a water surveillance network’s sensor must be sent 

back to a central location in order for the 

appropriate actions to be taken. Lightweight 

communication protocols that can send relatively 

tiny data over long distances are necessary for 

water surveillance networks due to the scattered 

character of the transferred data. According to the 

available material, LPWAN technologies are the 

best option for use in this context. In [19], LPWAN 

systems are extensively discussed. Several sub-

GHz options were evaluated and contrasted for 

their range, data velocity, and number of available 

channels. The claimed maximum range for Ingenu 

in urban areas is 15 kilometers, followed by SigFox 

at 10 kilometers in urban areas and 50 kilometers in 

rural areas, and finally LoRa at 5 kilometers in 

urban areas and 15 kilometers in rural areas.  

The argument over whether software models or 

real-world testing is more effective when 

evaluating communication technologies has raged 

on for quite some time. Although this discussion is 

still ongoing, many studies have shown that 

simulation findings are comparable to or even 

better than those from actual experiments. In [20], 

for instance, the writers contrasted simulation 

findings with real-world tests of inter-vehicle 

communication using LoRa. For the simulations, 

they used NS3, and for the real-world experiments, 

they used an Arduino UNO with a Dragino LoRa 

module. They measured things like propagation 

loss, covering packet inter-reception (PIR), packet 

delivery ratio (PDR), and received signal strength 

indicator (RSSI). They determined that the 

simulator's findings were aligned with those of the 

actual exams. Hassan [21] also examined the 

performance of LoRa as a Wi-Fi gateway, 

comparing modelling findings (from Radio Mobile 

emulator) with real-world experiments (using 

microprocessors + LoRa modules). Unlike [20], 

[21] did not provide a comprehensive analysis of 

virtual versus real-world outcomes across all 

metrics studied, but still reached the same positive 

conclusion regarding the simulator's efficacy. [22] 

installed seven Bee module pairs and contrasted 

their ability to communicate on 800/900MHz and 

2.4GHz bands. They came to the conclusion that 

the Radio Mobile simulator's findings were 

consistent with those of actual evaluations. 

THE SYSTEM FOR CHECKING 

WATER QUALITY  

Creating a practical network for real-time tracking 

of water factors is a primary goal of this effort. Our 

goal in creating this network, which we call "Water 

Net," is to facilitate a Cyber-Physical System for 

Water. (CPS-W). Like other CPS [32], CPS-W 

utilizes a Fog/Cloud computing [17] infrastructure 

alongside an Internet of Things (IoT) sensor and 

actuation component. This combination has found 

use in many fields, including medicine [33], transit 

[34], and environmental observation [36]. A two-

tiered LoRa network would electronically link the 

devices in Water Net. The LoRa (Long Range) 

LPWAN prioritizes battery consumption over data 

transfer speed [19]. In optimal conditions (clean 

line of sight, excellent antenna height, antenna 

gain, transmission strength, and transmission 

frequency), it has been demonstrated that LoRa can 

send data up to a length of 300 km at the expense 

of data capacity [37]. The monitoring data being 

shared between Water Net devices is relatively 

tiny, so we only need a small amount of capacity. 

WATER SYSTEM IN CAPE TOWN  

The city of Cape Town in South Africa's Western 

Cape region is proposing a network called Water 

Net to keep tabs on water quality. Water for Cape 

Town (abbreviated CCT) and its surrounding area 

is stored in fifteen large ponds. The CCT owns 

eleven of these ponds [38], while the Department 

of Water and Sanitation is responsible for the 

remaining four. In Figure 2, we see a bird's-eye 

view of the city's dam infrastructure. This study 

creates a network model for tracking water quality 
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metrics for consumption and agricultural reasons, 

with a particular emphasis on the 11 ponds held by 

CCT. Water amounts, consumption, and 

replenishment rates can all be monitored with this 

device in addition to its "fitness for use" for 

imbibing and watering. Some of these structures 

have tracking systems, but the vast majority rely on 

human operators or are completely independent. 

The goal of our network development effort is to 

create a system for live, real-time tracking of water 

quality metrics across all of the structures in a 

community. 

 

 FIGURE 1. Locations of CCT-owned dams across the City of 

Cape Town, South Africa. Where A = Alexandra Rest. Dam; D 

= DeVilliers Dam; H = Hely-Hutchinson Resv. Dam; K = 

Kleinplaas Dam; L = Lewis Gay Dam; O = Woodhead Dam; 

SL = Steenbras Dam – Lower; SU = Steenbras Dam – Upper; 

R = Victoria Dam; W = Wemmershoek Dam; Z = Land-en-

Zeezicht Dam. 

WATER QUALITY EVALUATION  

The goal of WaterNet is to collect information 

about the quality of the city's water supply at 

various facilities. Water's "fitness for use" (for 

things like imbibing and drainage) is evaluated 

using these standards. Machine learning (ML) 

models are proposed in this work as an alternative 

to traditional instrumental and physic-chemical 

analysis for evaluating water parameters in the lab. 

These models can automatically ascertain whether 

or not a given water sample is suitable for human 

consumption or agricultural irrigation by 

considering a wide range of water quality 

indicators. The goal is to simplify and reduce the 

time and money needed to test and analyse water 

samples to ascertain their quality. Results could be 

achieved in a matter of minutes by transferring a 

pre-trained ML model from one place to another 

using ML and transfer learning. Detailed 

explanations of each step in the process depicted in 

Figure 4 are provided below.  

CURATION OF DATA  

To study ML, a sample is usually necessary. Our 

own was necessary because there were no publicly 

available, comprehensive databases covering 

Africa's potable and agricultural water. We mainly 

used Elsevier's Data in Brief to compile several 

"small" databases on potable water and 

irrigation/agriculture. (Dib). Dib is an online, peer-

reviewed publication that publishes study data and 

methods [40]. To find relevant papers, we used the 

terms "irrigation water," "potable water," 

"groundwater," and "drinking water," before 

removing any that weren't directly about these 

topics. Overall, we found 11 papers (7 of which 

included irrigation water statistics) with the 

majority coming from Asia. Using Microsoft Excel, 

we collected the data, merged it, and stored it as 

two csv files: one for potable water and one for 

irrigation. The most important thing we needed to 

get started on this project was access to data for 

training and testing machine learning models to 

categorize water samples. These water attribute 

data should ideally have come from a water 

surveillance network, but as far as we can tell, no 

such network exists, so we had to invent. Since this 

is just a proof of concept, we aren't too picky about 

where the data came from, but we did make sure 

that all the datasets had very comparable feature 

sets. (Water parameters). The work here resembles 

that of [24]. The characteristics (water factors) 

from the various papers examined are compared in 

Tables 1 and 2. 

 

 

IMPLEMENTATION 

There were two stages to our rollout plan: A and B. 

Phase A concentrated on Water Net, the water 

surveillance network, and Phase B evaluated water 

purity using data collected by Water Net.  

PART ONE: Mocking Up a Water 

Network 

Radio Mobile software [57] was used in 

conjunction with Google Maps and Topographic 

map.com to model a citywide water surveillance 

network (Water Net). Topographic-map.com is a 

free online tool that gives information about the 

topographical topography of a region, including 

hills, mountains, and Val leys, in contrast to 

Google Maps, which is a web-based mapping and 

real-time position sharing service by Google [58]. 

Radio Mobile is a radio-frequency dispersion 
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simulation network planner [57]. Coverage and Pt. 

broadcasts are simulated using a dispersion model 

that takes into account the effects of rough 

topography. Because Cape Town is built on a series 

of rolling areas, with several valleys wedged 

between mountains and hills, Radio Mobile's 

topography transmission feature makes it perfect 

for our application. Since most transmission bands 

do not travel through hills and/or mountains, the 

city's irregular topography makes direct line of 

sight radio dispersion challenging and presents an 

intriguing networking task. Therefore, Radio 

Mobile is ideally suited for evaluating Water Net’s 

radio reachability, signal levels, and line of sight. 

We started by making a Google Maps overlay with 

all the important landmarks and attractions.  

This was exported to a KML file with the locations 

embedded, and then loaded into Radio Mobile. A 

two-layer hierarchical network architecture was 

developed in Radio Mobile. LoRa networks were 

set up at the lower level to link the dams to the 

WTPs (FNs), with a transmitting strength of 14 

dBm, a reception cut-off of 80 dBm, and antennas 

standing 10m tall. Using a 2.4 GHz LoRa network 

[60] set up with a frequency range of 2.41-2.46 

GHz, transmit strength of 22 dBm, reception cut-

off of 75 dBm, antenna gain of 21 dB, and height 

of 30 m, the FNs were linked to the ILLIFU Cloud 

data center. Figure 5 depicts Water Net’s two-tiered 

Cyber Physical hierarchical network, with X-GW 

representing the gates (edge devices) at each dam 

and FN1 representing the core network. .The FN7 

WTPs are where all the fog nodes are located. We 

used a dispersal multiplier of 12 to increase our 

reach. Since we are only transmitting tiny sensor 

data at regular periods, we can live with the 

reduced data rates that come from a larger 

dispersion factor [19]. 

 

 

CONCLUSIONS & RESULTS 

In keeping with the execution portion that came 

before, we share our findings in two parts: the first 

covers how the water surveillance network (Water 

Net) performed, and the second examines how ML 

can be used to evaluate water purity for human 

consumption and agricultural irrigation. Table 4 

provides a summary of the findings and insights 

gained from simulating the network in Radio 

Mobile for the purposes of A. WATER 

MONITORING NETWORK. Only two FNs (FN3 

and FN4) are able to access ILLIFU with a single 

step of connectivity. For this reason, we will be 

using a star-based, point-to-point network. 

 

FIGURE 2. Hierarchical Cyber Physical Network for Water 

Net. 

 topology cannot be used, instead a partial mesh 

with node rebroadcast is considered. FN1 is located 

close to the ground level and almost fully 

surrounded by high grounds, hence the need for a 

repeater (STA) mounted on a 1136 m high hilltop 

at Stellenbosch farms (-33.90989, 18.74262). 

Despite this repeater, FN1 (via the repeater) is still 

unable to directly reach ILLIFU but has FN4 in its 

line of sight. FN1 can therefore reach ILLIFU by 

hopping through STA and FN4. Like FN1, FN2’s 

LOS to ILLIFU is obstructed by a hill and has to be 

rebroadcasted via FN3. FN5 requires an antenna of 

about 40-50 m height to reach FN4, from where its 

signal is rebroadcasted to ILLIFU. FN6 and FN7 

are somewhat isolated and unreachable by all FNs, 

because they are located behind Table Mountain. 

To allow reachability to both sites, a repeater 

(TMA) is placed on a hill around Hoot Bay in Cape 

Town. Figure 6 is a snapshot of the partial mesh 

network extracted from Radio Mobile. The figure 

reveals that most traffic traverse through FN3 and 

FN4, hence were the most critical nodes in the 

network. A reasonable explanation for this is that 

both FN3 and FN4 have clear line of sight to 

ILLIFU, as there is no high-rise geographical 

structure on their paths. 

ECONOMIC VIABILITY  

In this section, we discuss some basic financial 

considerations to highlight the advantage of our 

proposed LoRa-based Water Net over pre-existing 

solutions such as cellular networks. A. 

INFRASTRUCTURE COST Table 10 is a high-

level hypothetical bill of materials (BOM), 

showing the main components required for Water 

Net and their approximate costs in US Dollars 



                 
 
             ISSN: 2322-3537 

                                                                                                           Vol-12 Issue-01 Mar 2023 

150 
 

(USD). The cost reported are based on prices 

obtained from various online retailers and were 

correct as at the time of writing. Though certain 

components such as cables, power adapters, 

connectton jacks, software were not included, the 

BOM reveals that the solution is achievable with an 

estimated budget of 

TABLE 1. High-level bill of material for 

waterjet 

 

about US$ 100,000. In essence, with this budget, a 

water monitoring network covering 11 widely 

dispersed (and sometimes remote) locations can be 

deployed in a matter of days. In comparison, setting 

up a single standard base transceiver station 

(cellular tower) in a remote location without 

cellular coverage, costs between US$ 100,000 – 

US$ 150,000. This cost is exclusive of foundation 

and concrete works, fencing and brick works, the 

air-conditioned control room, electrification and 

wiring, antennas, and backup power generator(s), 

all of which could raise the cost of the tower to 

about US$ 250,000. Beyond the cost, erecting 

cellular towers require extensive site surveys and 

environmental impact assessment prior to 

approvals from regulatory authorities, both of 

which can take several months to complete. To put 

this in context, setting up WaterNet to monitor 

water parameters using cellular networks would 

cost at least double the cost of using LoRa and 

would take significantly longer time. This is based 

on the assumption that only one cellular tower 

needs to be erected. In situations where all the 

locations to be monitored are in remote locations 

with no cellular coverage, the time and cost would 

grow astronomically. An argument can be made for 

situations where cellular coverage already exists. In 

such scenarios, WaterNet could piggyback on the 

existing infrastructure, thus, the cost 

TABLE 2. SWOT analysis of waternet. 

 

would be left out of the bill of materials (BOM), 

costing US$5,250 for the LoRa devices and 

antennas. By excluding the LoRa modules and 

peripherals (which together only account for about 

5% of the overall cost, as shown in Table 10), we 

can save about US$ 88,340, or 95.7% of the initial 

budget. Using cellular networks also introduces 

additional costs, such as the price of cellular ports, 

SIM cards, recurring data membership fees, etc., 

which would drive the final price well above the 

projected US$ 100,000. These results demonstrate 

the superior fiscal viability of our suggested LoRa-

based WaterNet system. 

CONCLUSION  

The first significant idea explored in this work was 

the suggestion of a real-time water surveillance 

network to collect data on water factors from water 

bodies. Second, evaluating water purity through the 

use of machine learning (ML) algorithms. The City 

of Cape Town served as a case study for the 

development of the LoRa-based water surveillance 

network. LoRa is a low-power, long-range system 

for data transfer. Based on the Radio Mobile 

modeling results, a partial mesh network design 

was found to be the most suitable network to 

encompass the metropolis. With the help of 

machine learning algorithms, the Cloud computer 

where this surveillance network stores its data can 

determine whether or not the water is safe for 

human consumption or agricultural use. In this 

study, two appropriate datasets were constructed to 

train and evaluate the three Machine Learning 

(ML) models, Random Forest (RF), Logistic 

Regression (LR), and Support Vector Machine 

(SVM). (SVM). Test results revealed that LR was 
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the most effective method for classifying potable 

water, with the lowest erroneous positive and 

negative values, while SVM did better when 

classifying irrigation water. Finally, a model was 

investigated using iterative feature reduction to 

determine the water parameter(s) most important to 

classification accuracy in ML models. (RFE). The 

obtained findings demonstrated that SSP was the 

least influencing measure for irrigation water, 

while pH and total hardness were the least 

influential for potable water. 
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